Protein Synthesis

Making Proteins

1. Transcription
 - DNA
 - mRNA
 - RNA polymerase

2. Translation
 - rRNA
 - amino acids
 - Anticodon
 - Polypeptide chain
 - Ribosome

Protein synthesis
Why Do We Need Proteins?

1. Cell Structure
 - Cell = 80% protein

Cell membrane
Why Do We Need Proteins?

2. Cell Processes
 - Hormones (signals)
 - Enzymes (speed up reactions)
Why Do We Need Proteins?

- Membrane Channels
 (remember transport?)

- Neurotransmitters
 (carry nerve / brain messages)
What Do We Need For Protein Synthesis?

1. DNA

Template for making mRNA during Transcription
What Do We Need For Protein Synthesis?

2. RNA
 a. mRNA = messenger RNA
 - makes & takes copy of DNA to cytoplasm
 b. tRNA = transfer RNA
 - Matches w/ mRNA on ribosome
 - Carries AA to add to protein chain

?s 1-7
What Do We Need For Protein Synthesis?

c. rRNA = ribosomal RNA

- Part of ribosome
- Reads mRNA
- Directs tRNA
What Do We Need For Protein Synthesis?

3. Ribosome

- Reads mRNA
- Directs tRNA
- Creates peptide bonds between AAs (makes polypeptide chain)
What Do We Need For Protein Synthesis?

4. **Amino Acids** (AAs)
 - Building blocks of proteins
 - (20 AAs essential)
 - Protein = AA chain
 = polypeptide chain
 - **ORDER MATTERS!**
 AA order determines f(x) of protein
Steps of Protein Synthesis

1. Transcription (writing the “message”)
 - DNA ▶ mRNA
 messenger carries code to cytoplasm

2. Translation (reading the “message”)
 - mRNA ▶ tRNA ▶ protein (AA chain)
 message translated into a protein
Steps of Protein Synthesis

1. **Transcription**
 - DNA to mRNA

2. **Translation**
 - mRNA to Protein

 - Ribosome
Steps of Protein Synthesis

(Nucleus)

(Cytoplasm)
Transcription

DNA ➤ mRNA

1. Location = nucleus
2. Steps
 a. Enzyme binds to DNA, unzips it
 b. mRNA copy of gene made from DNA template
 *U replaces T in RNA
Transcription

3 DNA nucleotides (triplet)

► mRNA codon

Codons

Translation

- mRNA ➔ tRNA ➔ protein (AA chain)

Location = cytoplasm

(first codon in mRNA is the start codon AUG)

?s 13-17
Translation

Steps of Translation
1. mRNA moves to cytoplasm, binds to ribosome
2. tRNA *anticodon* UAC brings AA (methionine) to mRNA *codon* on ribosome
Translation

3. Ribosome moves down mRNA to next codon

4. tRNA anticodon brings & attaches next AA with peptide bond
Translation

5. tRNA leaves ribosome once AA attached
Translation

6. Steps 1-5 repeated, adding AAs until STOP CODON *
 signals end of protein

7. Polypeptide chain released from ribosome

* UAG, UAA, or UGA
<table>
<thead>
<tr>
<th>DNA Triplet</th>
<th>mRNA Codon</th>
<th>tRNA Anti-codon</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Triplet</td>
<td>mRNA Codon</td>
<td>tRNA Anti-codon</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>TAC</td>
<td>AUG</td>
<td></td>
</tr>
<tr>
<td>GGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synthesis Practice

<table>
<thead>
<tr>
<th>DNA Triplet</th>
<th>mRNA Codon</th>
<th>tRNA Anti-codon</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Triplet</td>
<td>mRNA Codon</td>
<td>tRNA Anti-codon</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td></td>
</tr>
<tr>
<td>CCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synthesis Practice

<table>
<thead>
<tr>
<th>DNA Triplet</th>
<th>mRNA Codon</th>
<th>tRNA Anti-codon</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td>GGA</td>
</tr>
<tr>
<td>CCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Triplet</td>
<td>mRNA Codon</td>
<td>tRNA Anti-codon</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td>GGA</td>
</tr>
<tr>
<td>CCT</td>
<td>GGA</td>
<td></td>
</tr>
<tr>
<td>TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synthesis Practice

<table>
<thead>
<tr>
<th>DNA Triplet</th>
<th>mRNA Codon</th>
<th>tRNA Anti-codon</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td>GGA</td>
</tr>
<tr>
<td>CCT</td>
<td>GGA</td>
<td>CCU</td>
</tr>
<tr>
<td>TAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Triplet</td>
<td>mRNA Codon</td>
<td>tRNA Anti-codon</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td>GGA</td>
</tr>
<tr>
<td>CCT</td>
<td>GGA</td>
<td>CCU</td>
</tr>
<tr>
<td>TAT</td>
<td>AUA</td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Triplet</td>
<td>mRNA Codon</td>
<td>tRNA Anti-codon</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td>GGA</td>
</tr>
<tr>
<td>CCT</td>
<td>GGA</td>
<td>CCU</td>
</tr>
<tr>
<td>TAT</td>
<td>AUA</td>
<td>UAU</td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Triplet</td>
<td>mRNA Codon</td>
<td>tRNA Anti-codon</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td>GGA</td>
</tr>
<tr>
<td>CCT</td>
<td>GGA</td>
<td>CCU</td>
</tr>
<tr>
<td>TAT</td>
<td>AUA</td>
<td>UAU</td>
</tr>
<tr>
<td>ACT</td>
<td>UGA</td>
<td></td>
</tr>
<tr>
<td>DNA Triplet</td>
<td>mRNA Codon</td>
<td>tRNA Anti-codon</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>TAC</td>
<td>AUG</td>
<td>UAC</td>
</tr>
<tr>
<td>GGA</td>
<td>CCU</td>
<td>GGA</td>
</tr>
<tr>
<td>CCT</td>
<td>GGA</td>
<td>CCU</td>
</tr>
<tr>
<td>TAT</td>
<td>AUA</td>
<td>UAU</td>
</tr>
<tr>
<td>ACT</td>
<td>UGA</td>
<td>ACU</td>
</tr>
</tbody>
</table>
AMINO ACID FUN!!

- DNA Triplet: ACC
- mRNA codon: UGG
- tRNA anti-codon: ACC
- Amino acid: Tryptophan

Why you should know this?
Tryptophan is in TURKEY – makes you sleepy
Protein Synthesis Animation

Protein synthesis